Attention all NRDM Users: Effective July 1, 2018 website security has been updated with new password requirements. See details in direct email, or contact Lucy Cafeo at This e-mail address is being protected from spam bots, you need JavaScript enabled to view it with any questions.
Reference Details
Que, J. and Tsui, F. C. (2012), "Spatial and Temporal Algorithm Evaluation for Detecting Over-The-Counter Thermometer Sale Increases during 2009 H1N1 Pandemic", Online J Public Health Inform, 4, 1.

Spatial outbreak detection algorithms using routinely collected healthcare data have been developed since the late 90s to identify and locate disease outbreaks. However, current well-received spatial algorithms assume only one outbreak cluster present at the same point of time which may not be valid during a pandemic when several clusters of geographic areas concurrently occur. Based on a retrospective evaluation on time-series and spatial algorithms, this paper suggests that time series analysis in detection of pandemics is still a desirable process, which may achieve more sensitive performance with better timeliness. In this paper, we first prove in theory that two existing spatial models, the likelihood ratio and the Bayesian spatial scan statistics, are not useful if multiple clusters occur at the same point of time in different geographic regions. Then we conduct a comparison between a spatial algorithm, the Bayesian Spatial Scan Statistic (BSS), and a time series algorithm, the wavelet anomaly detector (WAD), on the performance of detecting the increase of the over-the-counter (OTC) medicine sales during 2009 H1N1 pandemic. The experiments demonstrated that the Bayesian spatial algorithm responded to the increase of thermometer sales about 3 days later than the time series algorithm. Time-series algorithms demonstrated an advantage for early outbreak detection, especially when multiple clusters occur at the same time in different geographic regions. Given spatial-temporal algorithms for outbreak detection are widely used, this paper suggests that epidemiologists or public health officials would benefit by applying time series algorithms as a complement to spatial algorithms for public health surveillance.
© 2020 Real-time Outbreak and Disease Surveillance Laboratory
Joomla! is Free Software released under the GNU/GPL License.